Zoonotic bacterial populations, gut fermentation characteristics and methane production in feedlot steers during oral nitroethane treatment and after the feeding of an experimental chlorate product.
نویسندگان
چکیده
Nitroethane inhibits the growth of certain zoonotic pathogens such as Campylobacter and Salmonella spp., foodborne pathogens estimated to cause millions of human infections each year, and enhances the Salmonella- and Escherichia coli-killing effect of an experimental chlorate product being developed as a feed additive to kill these bacteria immediately pre-harvest. Limited studies have shown that nitroethane inhibits ruminal methane production, which represents a loss of 2-12% of the host's gross energy intake and contributes to global warming and destruction of the ozone layer. The present study was conducted to assess the effects of 14-day oral nitroethane administration, 0 (0X), 80 (1X) or 160 (2X)mg nitroethane/kg body weight per day on ruminal and fecal E. coli and Campylobacter, ruminal and fecal methane-producing and nitroethane-reducing activity, whole animal methane emissions, and ruminal and fecal fermentation balance in Holstein steers (n=6 per treatment) averaging 403+/-26 (SD) kg BW. An experimental chlorate product was fed the day following the last nitroethane administration to determine effects on E. coli and Campylobacter. The experimental chlorate product decreased (P<0.001) fecal, but not ruminal (P>0.05) E. coli concentrations by 1000- and 10-fold by 24 and 48 h, respectively, after chlorate feeding when compared to pre-treatment concentrations (>5.7 log(10) colony forming units/g). No effects (P>0.05) of nitroethane or the experimental chlorate product were observed on fecal Campylobacter concentrations; Campylobacter were not recovered from ruminal contents. Nitroethane treatment decreased (P<0.01) ruminal (8.46, 7.91 and 4.74+/-0.78 micromol/g/h) and fecal (3.90, 1.36 and 1.38+/-0.50 micromol/g/h) methane-producing activity for treatments 0X, 1X and 2X, respectively. Administration of nitroethane increased (P<0.001) nitroethane-reducing activity in ruminal, but not fecal samples. Day of study affected ruminal (P<0.0001) but not fecal (P>0.05) methane-producing and nitroethane-reducing activities (P<0.01); treatment by day interactions were not observed (P>0.05). Ruminal accumulations of acetate decreased (P<0.05) in 2X-treated steers when compared with 0X- and 1X-treated steers, but no effect (P>0.05) of nitroethane was observed on propionate, butyrate or the acetate to propionate ratio. Whole animal methane emissions, expressed as L/day or as a proportion of gross energy intake (%GEI), were unaffected by nitroethane treatment (P>0.05), and were not correlated (P>0.05) with ruminal methane-producing activity. These results demonstrate that oral nitroethane administration reduces ruminal methane-producing activity but suggest that a microbial adaptation, likely due to an in situ enrichment of ruminal nitroethane-reducing bacteria, may cause depletion of nitroethane, at least at the 1X administration dose, to concentrations too low to be effective. Further research is warranted to determine if the optimization of dosage of nitroethane or related nitrocompouds can maintain the enteropathogen control and anti-methanogen effect in fed steers.
منابع مشابه
Effect of oral nitroethane and 2-nitropropanol administration on methane-producing activity and volatile fatty acid production in the ovine rumen.
Strategies are sought to reduce economic and environmental costs associated with ruminant methane emissions. The effect of oral nitroethane or 2-nitropropanol administration on ruminal methane-producing activity and volatile fatty acid production was evaluated in mature ewes. Daily administration of 24 and 72 mg nitroethane/kg body weight reduced (P<0.05) methane-producing activity by as much a...
متن کاملEffects of the methane-inhibitors nitrate, nitroethane, lauric acid, Lauricidin and the Hawaiian marine algae Chaetoceros on ruminal fermentation in vitro.
The effects of several methane-inhibitors on rumen fermentation were compared during three 24h consecutive batch cultures of ruminal microbes in the presence of nonlimiting amounts of hydrogen. After the initial incubation series, methane production was reduced greater than 92% from that of non-treated controls (25.8+/-8.1 micromol ml(-1) incubation fluid) in cultures treated with nitroethane, ...
متن کاملEffects of Sorting Steers by Body Weight into Calf-Fed, Summer Yearling, and Fall Yearling Feeding Systems
Two years of data (288 steers/yr) were used to determine if sorting cattle by BW into different production systems would decrease overweight carcasses (>431 kg) and hot carcass weight (HCW) variation. At receiving, steers were assigned randomly into sorted or unsorted groups (n = 144 steers/group). Within a group, steers were assigned to 1 of 3 feeding times: 1) calf-fed (entering the feedlot a...
متن کاملRuminal Methane Emission, Microbial Population and Fermentation Characteristics in Sheep as Affected by Malva sylvestris Leaf Extract: in vitro Study
The objective of this study was to investigate in vitro effect of Malva sylvestris leaf extract (at 0, 25, 50 and 100 µL/30 mL of medium) on sheep ruminal cellulolytic and total viable bacteria growth, protozoa populations, methane production, neutral detergent fiber degradability (NDFD) and fermentation efficiency of oat hay. The addition of Malva sylvestris leaf extract at 25, 50 and 100 µL l...
متن کاملThe Effects of Phenolic Compounds in Iranian Propolis Extracts on in vitro Rumen Fermentation, Methane Production and Microbial Population
The objective of this study was to determine the chemical compounds of Iranian propolis (IP) extracts and to show flavonoids and phenol effects on methane production, fermentation characteristics and rumen microbial population (in vitro). In this study two diets with different concentrate: forage ratios as (HC: high concentrate) and (MC: middle concentrate), respectively as non-supplemented or ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Anaerobe
دوره 13 1 شماره
صفحات -
تاریخ انتشار 2007